Beneficial Insects of Strawberries

Beneficial Insects

Beneficial insects include **pollinators** and **natural enemies** of pests. Supporting beneficial insects can reduce reliance on commercial bees and pesticides.

Pollinators of Strawberries

Cultivated strawberries are self-fertile, but pollination by **honey bees** and **native bees** has repeatedly been shown to enhance strawberry quality. In general, **bee diversity** has been shown to enhance fruit quality of various plants.¹

Strawberry pollination by bees has been shown to:

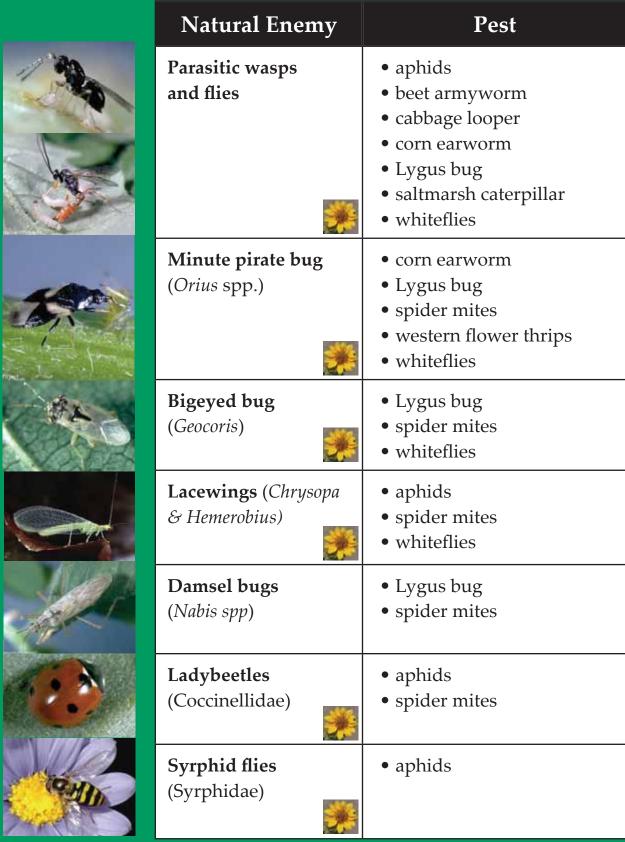

- increase **fruit size** and **weight**^{2,3}
- decrease malformations^{2,3,4}
- enhance fruit **redness**²
- increase firmness and shelf life²
- speed up fruit development time⁵

Photo credit: Kristine Krewenka, Agroecology, Gottingen, Germany.

Natural Enemies of Strawberry Pests

Indicates insects that are known to benefit from feeding on floral nectar or pollen

Supporting Beneficial Insects

Floral resources such as **nectar** and **pollen** are important for pollinators of strawberries and natural enemies of strawberry pests.

Honeybees are important pollinators of strawberries, but are more attracted to other floral resources.⁶ Planting flowering plants that may help sustain **native bees**, may and retain honeybee populations when strawberries are not in bloom.

Many **natural enemies** can live longer, attack more prey, and produce more offspring when they have access to nectar and/or pollen.⁷ Beneficial insects might utilize strawberry flowers, but may benefit from the **addition of other flowers**.

Pesticides are associated with **honeybee** and **native bee** population declines. Pesticides have lethal and sub-lethal effects on bees, and make bees more susceptible to disease.⁸

Natural enemies are also sensitive to pesticide exposure, even to insecticides that target specific pest populations.⁹

Thus, reduction in pesticide use may help sustain beneficial insects on strawberry farms.

Learn More

- University of California Integrated Pest Management www.ipm.ucdavis.edu/
- The Xerces Society for Invertebrate Conservation <u>www.xerces.org/fact-sheets/</u>
- 1) Frund et al. 2013. Bee diversity effects on pollination depend on functional complementarity and niche shifts. *Ecology*.
 2) Klatt et al. 2014. Bee pollination improves crop quality, shelf life and commercial value. *Proc R Soc B*. 3) Chagnon et al. 1993. Complimentary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). *Ecology and Behavior*. 4) Lopez-Medina et al. 2006. Misshapen fruit in strawberry, an agronomic evaluation. *Acta Horticulturae*.
 5) Paydas et al. 2000. Effects of pollination of strawberries grown in plastic greenhouses by honeybees and bumblebees on the yield and quality of the fruits. *Acta Horticulturae*. 6) Free and Smith. 1961. The foraging behaviour of honeybees from colonies moved into a pear orchard in full flower. Bee World. 7) Lundgren. 2009. Relationships of natural enemies and non-prey foods. Springer. 8) Pettis et al. 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen *Nosema ceranae*. *PLoS ONE*. 9) Prabhaker et al. 2011. Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. *Biological and Microbial Control*.